Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Ä¡ÀÇÇÐ ±³À°À» À§ÇÑ ÇÁ·ÎÅäŸÀÔ ½Ã¹Ä·¹ÀÌÅÍÀÇ °³¹ß

Development of a prototype simulator for dental education

´ëÇÑÄ¡°úº¸Ã¶ÇÐȸÁö 2023³â 61±Ç 4È£ p.257 ~ 267
±è¹Ì¿¤, ½ÉÀçÈÆ, ¿¡Àθó, ±è¸íÁÖ, ¹Ú¿µ¼®, ±ÇÈ£¹ü, ¹ÚÀçÈï,
¼Ò¼Ó »ó¼¼Á¤º¸
±è¹Ì¿¤ ( Kim Mi-El ) - 
½ÉÀçÈÆ ( Sim Jae-Hoon ) - 
¿¡Àθó ( Aein Mon ) - 
±è¸íÁÖ ( Kim Myung-Joo ) - 
¹Ú¿µ¼® ( Park Young-Seok ) - 
±ÇÈ£¹ü ( Kwon Ho-Beom ) - 
¹ÚÀçÈï ( Park Jae-Heung ) - 

Abstract

¸ñÀû : ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº Ä¡ÀÇÇÐ ±³À°À» À§ÇÑ ÇÁ·ÎÅäŸÀÔ ·Îº¿ ½Ã¹Ä·¹ÀÌÅ͸¦ Á¦ÀÛÇÏ°í, ÇϾǿÀ» ½Ã¹Ä·¹ÀÌ¼Ç ÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ¸¦ Å×½ºÆ®Çϸç, Ä¡°ú½Ç½À Áß Àڱؿ¡ ´ëÇÑ ½Ã¹Ä·¹ÀÌÅÍÀÇ ¹ÝÀÀ °¡´É¼ºÀ» Æò°¡ÇÏ´Â °ÍÀ̾ú´Ù.

Àç·á ¹× ¹æ¹ý : °¡»ó ½Ã¹Ä·¹ÀÌÅÍ ¸ðµ¨Àº cone-beam computed tomography (CBCT) µ¥ÀÌÅ͸¦ »ç¿ëÇÏ¿© °æÁ¶Á÷À» ±¸È¹È­ÇÑ ÈÄ Á¦À۵Ǿú´Ù. ½Ã¹Ä·¹ÀÌÅÍÀÇ ÇÁ·¹ÀÓÀº polylactic acid (PLA) ¼ÒÀ縦 »ç¿ëÇÏ¿© 3D ÇÁ¸°Æà µÇ¾úÀ¸¸ç, µ§Æ¼Æû°ú ½Ç¸®ÄÜ ¾ó±¼ ½ºÅ²À» ÀåÂøÇÏ¿© ¸ðµ¨À» Çü¼ºÇÏ¿´´Ù. ¼­º¸ ¾×Ãß¿¡ÀÌÅÍ´Â ½Ã¹Ä·¹ÀÌÅÍÀÇ ¿òÁ÷ÀÓÀ» Á¦¾îÇϴµ¥ »ç¿ëµÇ¾ú°í, ´Ù¾çÇÑ ¼¾¼­µé·Î ½Ã¹Ä·¹ÀÌÅÍÀÇ ¹ÝÀÀÀ» »ý¼ºÇÏ¿´´Ù. ¼öÀ§ ¼¾¼­°¡ ¹ÝÀÀÇÏ´Â ¹°ÀÇ ¾çÀ» ÃøÁ¤Çϱâ À§ÇØ ¼öÀ§Å×½ºÆ®°¡ ¼öÇàµÇ¾ú´Ù. ¶ÇÇÑ, ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ǰú ½ÇÁ¦ ¸ðµ¨À» ÅëÇØ ½Ã¹Ä·¹ÀÌÅÍÀÇ ÇϾǿ°ú ÇϾǿ ¹üÀ§¸¦ Å×½ºÆ®ÇÏ¿´´Ù.

°á°ú : ÇÁ·ÎÅäŸÀÔ ·Îº¿ ½Ã¹Ä·¹ÀÌÅÍ´Â ÀÛµ¿ ÀåÄ¡, Àü±â ÀåÄ¡°¡ ÀÖ´Â »ó¹Ý½Å, ÅΰüÀýÀ» Æ÷ÇÔÇÏ´Â ¸Ó¸® ¹× µ§Æ¼ÆûÀ¸·Î ±¸¼ºµÇ¾ú´Ù. ½Ã¹Ä·¹ÀÌÅÍÀÇ ÅΰüÀýÀº ȸÀü ¹× º´Áø ¿îµ¿À» ±¸ÇöÇϸ鼭 2ÀÚÀ¯µµ¸¦ ±¸µ¿ÇÒ ¼ö ÀÖ¾ú´Ù. ¼öÀ§ Å×½ºÆ®¿¡¼­ ¼öÀ§ ¼¾¼­ÀÇ Æ¯Á¤ ÀÓ°è°ªÀº 10.35 ml¿´´Ù. ÄÄÇ»ÅÍ ½Ã¹Ä·¹À̼ǰú ½ÇÁ¦ ¸ðµ¨ ¸ðµÎ¿¡¼­ Àΰ£ÀÇ ¿òÁ÷ÀÓÀ» ¸ð¹æÇÏ¿´°í, ½Ã¹Ä·¹ÀÌÅÍÀÇ ÇϾǿ ½Ã °³±¸¹üÀ§´Â 50 mm¿´´Ù.

°á·Ð : È¿À²¼º°ú ¾ÈÁ¤¼ºÀ» °³¼±Çϱâ À§Çؼ­´Â ´õ ¸¹Àº ¹ßÀüÀÌ ÇÊ¿äÇÏÁö¸¸, º» »ó¹Ý½Å ÇÁ·ÎÅäŸÀÔÀÇ ½Ã¹Ä·¹ÀÌÅÍ´Â ÇâÈÄ Ä¡°ú½Ç½À ±³À°¿¡ ÀáÀçÀûÀ¸·Î À¯¿ëÇÒ °ÍÀ¸·Î ±â´ëµÈ´Ù.

Purpose : The purpose of the study was to fabricate a prototype robotic simulator for dental education, to test whether it could simulate mandibular movements, and to assess the possibility of the stimulator responding to stimuli during dental practice.

Materials and methods : A virtual simulator model was developed based on segmentation of the hard tissues using cone-beam computed tomography (CBCT) data. The simulator frame was 3D printed using polylactic acid (PLA) material, and dentiforms and silicone face skin were also inserted. Servo actuators were used to control the movements of the simulator, and the simulator¡¯s response to dental stimuli was created by pressure and water level sensors. A water level test was performed to determine the specific threshold of the water level sensor. The mandibular movements and mandibular range of motion of the simulator were tested through computer simulation and the actual model.

Results : The prototype robotic simulator consisted of an operational unit, an upper body with an electric device, a head with a temporomandibular joint (TMJ) and dentiforms. The TMJ of the simulator was capable of driving two degrees of freedom, implementing rotational and translational movements. In the water level test, the specific threshold of the water level sensor was 10.35 ml. The mandibular range of motion of the simulator was 50 mm in both computer simulation and the actual model.

Conclusion : Although further advancements are still required to improve its efficiency and stability, the upper-body prototype simulator has the potential to be useful in dental practice education.

Å°¿öµå

Ä¡ÀÇÇÐ ±³À°; ÇϾǿ; ·Îº¿È¯ÀÚ; ½Ã¹Ä·¹ÀÌÅÍ
Dental education; Mandibular movement; Robot patient; Simulator

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸